Two thalamic pathways to primary auditory cortex.
نویسندگان
چکیده
Neurons in the center of cat primary auditory cortex (AI) respond to a narrow range of sound frequencies and the preferred frequencies in local neuron clusters are closely aligned in this central narrow bandwidth region (cNB). Response preferences to other input parameters, such as sound intensity and binaural interaction, vary within cNB; however, the source of this variability is unknown. Here we examined whether input to the cNB could arise from multiple, anatomically independent subregions in the ventral nucleus of the medial geniculate body (MGBv). Retrograde tracers injected into cNB labeled discontinuous clusters of neurons in the superior (sMGBv) and inferior (iMGBv) halves of the MGBv. Most labeled neurons were in the sMGBv and their density was greater, iMGBv somata were significantly larger. These findings suggest that cNB projection neurons in superior and iMGBv have distinct anatomic and possibly physiologic organization.
منابع مشابه
Surgically created neural pathways mediate visual pattern discrimination.
Combined lesions of retinal targets and ascending auditory pathways can induce, in developing animals, permanent retinal projections to auditory thalamic nuclei and to visual thalamic nuclei that normally receive little direct retinal input. Neurons in the auditory cortex of such animals have visual response properties that resemble those of neurons in the primary visual cortex of normal animal...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملThe sensory projections to the frontal association cortex in the dog.
Afferents to the frontal association cortex (FAC) from structures involved in olfactory, visual and auditory functions were studied in 37 dogs using the method based on the retrograde axonal transport of horseradish peroxidase. Separate injections to FAC or to the mediodorsal thalamic nucleus (MD) showed that sensory afferents could reach FAC by two channels: by direct cortico-cortical projecti...
متن کاملSubcortical, modality-specific pathways contribute to multisensory processing in humans.
Oftentimes, we perceive our environment by integrating information across multiple senses. Recent studies suggest that such integration occurs at much earlier processing stages than once thought possible, including in thalamic nuclei and putatively unisensory cortical brain regions. Here, we used diffusion tensor imaging (DTI) and an audiovisual integration task to test the hypothesis that anat...
متن کاملGene expression identifies distinct ascending glutamatergic pathways to frequency-organized auditory cortex in the rat brain.
A conserved feature of sound processing across species is the presence of multiple auditory cortical fields with topographically organized responses to sound frequency. Current organizational schemes propose that the ventral division of the medial geniculate body (MGBv) is a single functionally homogenous structure that provides the primary source of input to all neighboring frequency-organized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 152 1 شماره
صفحات -
تاریخ انتشار 2008